Skip to content

Isonicotinic Acid Hydrazide Synthesis Essay

Citation data is made available by participants in Crossref's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search inSciFinder.

  • Phenylnitrene, Phenylcarbene, and Pyridylcarbenes. Rearrangements to Cyanocyclopentadiene and Fulvenallene

    DavidKvaskoffHolgerLüerssenPawelBednarekCurtWentrup

    Journal of the American Chemical Society2014136 (43), 15203-15214

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • One-Step Template-Directed Synthesis of a Macrocyclic Tetraarylporphyrin Hexamer Based on Supramolecular Interactions with a C3-Symmetric Tetraarylporphyrin Trimer

    SimonaRucareanu,AnneSchuwey, andAlbertGossauer

    Journal of the American Chemical Society2006128 (10), 3396-3413

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Differentiation between Partial Agonists and Neutral 5-HT1B Antagonists by Chemical Modulation of 3-[3-(N,N-Dimethylamino)propyl]-4-hydroxy- N-[4-(pyridin-4-yl)phenyl]benzamide (GR-55562)

    MarieLamothe,Petrus J.Pauwels,KarineBelliard,PhilippeSchambel, andSergeHalazy

    Journal of Medicinal Chemistry199740 (22), 3542-3550

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Ion Exchange Method for Determination of 1-Isonicotinyl-2-acetylhydrazide (Acetylated Isoniazid) in Biological Fluids

    Alfred.HellerJ. E.KasikLeon.ClarkL. J.Roth

    Analytical Chemistry196133 (12), 1755-1757

    Abstract | PDF | PDF w/ Links

  • Conductivity Method for Determination of Urea

    Wei-tsung.ChinWybe.Kroontje

    Analytical Chemistry196133 (12), 1757-1760

    Abstract | PDF | PDF w/ Links

  • Bajaj S, Sambi SS, Madan AK (2005) Prediction of anti-inflammatory activity of N-arylanthranilic acids: computational approach using refined Zagreb Indices. Croat Chem Acta 78(2):165–174Google Scholar

  • Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys Lett 89:399–404CrossRefGoogle Scholar

  • Bayrak H, Demirbas A, Demirbas N, Karaoglu SA (2009) Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. Eur J Med Chem 44:4362–4366PubMedCrossRefGoogle Scholar

  • Bedia KK, Elcin O, Seda U, Fatma K, Nathaly S, Sevima R, Dimoglo A (2006) Synthesis and characterization of novel hydrazide–hydrazones and the study of their structure–antituberculosis activity. Eur J Med Chem 41:1253–1261PubMedCrossRefGoogle Scholar

  • Bhandari SV, Bothara KG, Raut MK, Patil AA, Sarkate AP, Mokale VJ (2008) Design, synthesis and evaluation of antiinflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2-thiol and schiff bases of diclofenac acid as nonulcerogenic derivatives. Bioorg Med Chem 16:1822–1831PubMedCrossRefGoogle Scholar

  • Cappucino JG, Sherman N (1999) Microbiology—a laboratory manual. Addison Wesley Longman Inc., Redwood City, p 263Google Scholar

  • Cruz-Monteagudo M, Gonzalez-Diaz H, Aguero-Chapin G, Santana L, Borges F, Dominguez ER, Podda G, Uriarte E (2007) Computational chemistry development of a unified free energy Markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J Comput Chem 28(11):1909–1923PubMedCrossRefGoogle Scholar

  • Dai J, Sun C, Han S, Wang L (1999) QSAR for polychlorinated compounds (PCOCs). I. Prediction of partition properties for PCOCs using quantum chemical parameters. Bull Environ Contam Toxicol 62:530–538PubMedCrossRefGoogle Scholar

  • Emami S, Foroumadi A, Falahati M, Lotfali E, Rajabalian S, Ebrahimi A, Farahyar S, Shafiee A (2008) 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorg Med Chem Lett 18:141–146PubMedCrossRefGoogle Scholar

  • Gemma S, Kukreja G, Fattorusso C, Persico M, Romano MP, Altarelli M, Savini L, Campiani G, Fattorusso E, Basilico N, Taramelli D, Yardley V, Butini S (2006) Synthesis of N1-arylidene-N2-quinolyl and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorg Med Chem Lett 16:5384–5388PubMedCrossRefGoogle Scholar

  • Golbraikh A, Tropsha A (2002) Beware of q2!. J Mol Graphics Model 20(4):269–276CrossRefGoogle Scholar

  • Gonzalez-Diaz H, Prado-Prado FJ (2008) Unified QSAR and network-based computational chemistry approach to antimicrobials, part 1: multispecies activity models for antifungals. J Comput Chem 29(4):656–667PubMedCrossRefGoogle Scholar

  • Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics—current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7(10):1015–1029PubMedCrossRefGoogle Scholar

  • Gonzalez-Diaz H, Gonzalez-Diaz Y, Santana L, Ubeira FM, Uriarte E (2008) Networks and connectivity indices. Proteomics 8(4):750–778PubMedCrossRefGoogle Scholar

  • Guven OO, Erdogan T, Goker H, Yildiz S (2007) Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers. Bioorg Med Chem Lett 17:2233–2236PubMedCrossRefGoogle Scholar

  • Halder AK, Jha T (2010) Validated predictive QSAR modeling of N-aryl-oxazolidinone-5-carboxamides for anti-HIV protease activity. Bioorg Med Chem Lett 20:6082–6087PubMedCrossRefGoogle Scholar

  • Hansch C, Fujita T (1964) p-σ-π analysis: a method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626CrossRefGoogle Scholar

  • Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ (1973) Aromatic substituent constants for structure-activity correlations. J Med Chem 16(11):1207–1216PubMedCrossRefGoogle Scholar

  • Hatya SA, Aki-Sener E, Tekiner-Gulbas B, Yildiz I, Temiz-Arpaci O, Yalcin I, Altanlar N (2006) Synthesis, antimicrobial activity and QSARs of new benzoxazine-3-ones. Eur J Med Chem 41:1398–1404CrossRefGoogle Scholar

  • Heravi MJ, Kyani A (2004) Use of computer-assisted methods for the modeling of the retention time of a variety of volatile organic compounds: A PCA-MLR-ANN approach. J Chem Inf Comput Sci 44:1328–1335CrossRefGoogle Scholar

  • Hyperchem 6.0, Hypercube, Inc., Gainesville (1993)Google Scholar

  • Joshi SD, Vagdevi HM, Vaidya VP, Gadaginamath GS (2008) Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: a novel class of potential antibacterial and antitubercular agents. Eur J Med Chem 43:1989–1996PubMedCrossRefGoogle Scholar

  • Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New YorkGoogle Scholar

  • Kumar A, Sharma P, Gurram VK, Rane N (2006a) Studies on synthesis and evaluation of quantitative structure–activity relationship of 10-methyl-6-oxo-5-arylazo-6,7-dihydro-5H (1,3) azaphospholo(1,5-d) (1,4) benzodiazepin-2-phospha-3-ethoxycarbonyl-1-phosphorus dichlorides. Bioorg Med Chem Lett 16:2484–2491PubMedCrossRefGoogle Scholar

  • Kumar PM, Karthikeyan C, Moorthy NSH, Trivedi P (2006b) Quantitative structure–activity relationships of selective antagonists of glucagon receptor using QSAR descriptors. Chem Pharm Bull 54:1586–1591CrossRefGoogle Scholar

  • Kumar A, Narasimhan B, Kumar D (2007) Synthesis, antimicrobial, and QSAR studies of substituted benzamides. Bioorg Med Chem 15:4113–4124PubMedCrossRefGoogle Scholar

  • Kumar P, Narasimhan B, Sharma D (2008) Substituted benzoic acid benzylidene/furan-2-yl-methylene hydrazides: synthesis, antimicrobial evaluation and QSAR analysis. ARKIVOC xiii:159–178Google Scholar

  • Kumar P, Narasimhan B, Sharma D, Judge V, Narang R (2009) Hansch analysis of substituted benzoic acid benzylidene/furan-2-yl-methylene hydrazides as antimicrobial agents. Eur J Med Chem 44:1853–1863PubMedCrossRefGoogle Scholar

  • Kumar D, Judge V, Narang R, Sangwan S, Clerq ED, Balzarini J, Narasimhan B (2010a) Benzylidene/2-chlorobenzylidene hydrazides: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur J Med Chem 45:2806–2816PubMedCrossRefGoogle Scholar

  • Kumar P, Narasimhan B, Yogeeswari P, Sriram D (2010b) Synthesis and antitubercular activities of substituted benzoic acid N′-(substituted benzylidene/furan-2-ylmethylene)-N-(pyridine-3-carbonyl)-hydrazides. Eur J Med Chem 45:6085–6089PubMedCrossRefGoogle Scholar

  • Lather V, Madan AK (2005) Topological models for the prediction of anti-HIV activity of dihydro (alkylthio) (naphthylmethyl) oxopyrimidines. Bioorg Med Chem 13:1599–1604PubMedCrossRefGoogle Scholar

  • Leite ACL, Lima RSD, Moreira DR, Cardoso MV, Brito ACGD, Santos LMFD, Hernandes MZ, Kipustok AC, Lima RSD, Soares MBP (2006) Synthesis, docking and in vitro activity of thiosemicarbazones, aminoacyl-thiosemicarbazides and acyl-thiazolidones against trypanosoma. Bioorg Med Chem 14:3749–3757PubMedCrossRefGoogle Scholar

  • Lembege MV, Moreau S, Larrouture S, Montaudon D, Robert J, Nuhrich A (2008) Synthesis and antiproliferative activity of aryl- and heteroaryl-hydrazones derived from xanthone carbaldehydes. Eur J Med Chem 43:1336–1343CrossRefGoogle Scholar

  • Lourenco MCS, Ferreira ML, Souza MVN, Peralta MA, Vasconcelos TRA, Henriques MGMO (2008) Synthesis and anti-mycobacterial activity of (E)-N′-(monosubstituted-benzylidene)isonicotinohydrazide derivatives. Eur J Med Chem 43:1344–1347PubMedCrossRefGoogle Scholar

  • Mamolo MG, Zampieri D, Falagiani V, Vio L, Fermeglia M, Ferrone M, Pricl S, Banfi E, Scialino G (2004) Antifungal and antimycobacterial activity of new N1-[1-aryl-2-(1H-Imidazol-1-yl and 1H-1,2,4-triazol-1-yl)-thylidene]-pyridine-2-carboxamidrazone derivatives: a combined experimental and computational approach. ARKIVOC v:231–250Google Scholar

  • Mandloi D, Joshi S, Khadikar PV, Khosla N (2005) QSAR study on the antibacterial activity of some sulfa drugs: building blockers of Mannich bases. Bioorg Med Chem Lett 15:405–411PubMedCrossRefGoogle Scholar

  • Masunari A, Tavares LC (2007) A new class of nifuroxazide analogues: synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus. Bioorg Med Chem 15:4229–4236PubMedCrossRefGoogle Scholar

  • Narasimhan B, Kumari M, Jain N, Dhake AS, Sundaravelan C (2006) Correlation of antibacterial activity of some N-(5-(2-furanyl)-2- methyl-4-oxo-4H-thieno(2,3-d)pyrimidin-3-yl)-carboxamide and 3-substituted-5-(2-furanyl)-2-methyl-3H-thieno(2, 3-d)pyrimidin-4- ones with topological indices using Hansch analysis. Bioorg Med Chem Lett 16:4951–4958PubMedCrossRefGoogle Scholar

  • Narasimhan B, Judge V, Narang R, Ohlan S, Ohlan R (2007) Quantitative structure–activity relationship studies for prediction of antimicrobial activity of synthesized 2,4-hexadienoic acid derivatives. Bioorg Med Chem Lett 17:5836–5845PubMedCrossRefGoogle Scholar

  • National Committee for Clinical Laboratory Standards. Antimycobacterial susceptibility testing for Mycobacterium tuberculosis. Proposed standard M24-T. National Committee for Clinical Laboratory Standards, Villanova, PA, 1995Google Scholar

  • Nayyar A, Monga V, Malde AK, Coutinho E, Jain R (2007) Synthesis, anti-tuberculosis activity and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines. Bioorg Med Chem 15:626–640PubMedCrossRefGoogle Scholar

  • Osama I, Sabbagh El, Rady HM (2009) Synthesis of new acridines and hydrazones derived from cyclic β-diketone for cytotoxic and antiviral evaluation. Eur J Med Chem 44:3680–3686CrossRefGoogle Scholar

  • Painea SW, Barton P, Bird J, Denton R, Menochet K, Smith A, Tomkinson NP, Chohan KK (2010) A rapid computational filter for predicting the rate of human renal clearance. J Mol Graph Model 29(4):529–537CrossRefGoogle Scholar

  • Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, Clercq ED (1988) Rapid and automated tetrazolium based colorimetric assay for detection of anti-HIV compounds. J Virol Methods 20:309–322PubMedCrossRefGoogle Scholar

  • Pharmacopoeia of India (2007) Controller of Publications, vol I. Ministry of Health Department, Govt. of India, New Delhi, p 37Google Scholar

  • Pinheiro AAC, Borges RS, Santos SL, Alves CN (2004) A QSAR study of 8.O.4′-neolignans with antifungal activity. J Struct Mol (Theochem) 672:215–219CrossRefGoogle Scholar

  • Pirhadi S, Ghasem JB (2010) 3D-QSAR analysis of human immunodeficiency virus entry-1 inhibitors by CoMFA and CoMSIA. Eur J Med Chem 45:4897–4903PubMedCrossRefGoogle Scholar

  • Prado-Prado FJ, Gonzalez-Diaz H, de la Vega OM, Ubeira FM, Chou KC (2008) Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for Input-Coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg Med Chem 16(11):5871–5880PubMedCrossRefGoogle Scholar

  • Randic M (1975) Characterization of molecular branching. J Am Chem Soc 97:6609–6615CrossRefGoogle Scholar

  • Randic M (1993) Comparative regression analysis. Regressions based on a single descriptor. Croat Chem Acta 66:289–312Google Scholar

  • Schaper KJ (1999) Free-Wilson-type analysis of non-additive substituent effects on THPB dopamine receptor affinity using artificial neural networks. Quant Struct-Act Relat 18:354–360CrossRefGoogle Scholar

  • Sharma P, Rane N, Gurram VK (2004) Synthesis and QSAR studies of pyrimido (4,5-d) pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 14:4185–4190PubMedCrossRefGoogle Scholar

  • Sharma P, Kumar A, Sharma M (2006) Synthesis and QSAR studies on 5-(2-(2-methylprop-1-enyl)-1Hbenzimidazol-1yl)-4,6-diphenyl-pyrimidin-2-(5H)-thione derivatives as antibacterial. Eur J Med Chem 41:833–840PubMedCrossRefGoogle Scholar

  • Sortino M, Delgado P, Jaurez S, Quiroga J, Abonia R, Insuasey B, Nogueras M, Rodero L, Garibotto FM, Enriz RD, Zacchino SA (2007) Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg Med Chem Lett 15:484–494CrossRefGoogle Scholar

  • SPSS for Windows, version 10.05, SPSS Inc., Bangalore, India (1999)Google Scholar

  • Sriram D, Yogeeswari P, Madhu K (2006) Synthesis and in vitro antitubercular activity of some 1-[(4-sub)phenyl)-3-(4-{1-((pyridine-4-carbonyl) hydrazono) ethyl} phenyl) thiourea. Bioorg Med Chem Lett 16:876–878PubMedCrossRefGoogle Scholar

  • TSAR 3D Version 3.3 (2000) Oxford Molecular LimitedGoogle Scholar

  • Vicini P, Zani F, Cozzi P, Doytchinova I (2002) Hydrazones of 1, 2-benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem 37:553–564PubMedCrossRefGoogle Scholar

  • Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20PubMedCrossRefGoogle Scholar

  • Zhoua YP, Cai CB, Huanb S, Jiang JH, Wu HL, Shen GL, Yu RQ (2007) QSAR study of angiotensin II antagonists using robust boosting partial least square regression. Anal Chim Acta 593:68–74CrossRefGoogle Scholar